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Abstract

The George B. Moody PhysioNet Challenge 2023 was
dedicated to the development of automated methods for
predicting neurological recovery from coma after car-
diac arrest. Models were requested to predict a good vs
poor neurological outcome using electroencephalograms
(EEGs), electrocardiograms (ECGs) and clinical informa-
tion. Here, we proposed a deep learning model based on
a residual network architecture. The model was designed
to process only one 5-minute window for each hour up
to the 72nd from spontaneous resuscitation, and aggre-
gated the output probabilities of poor outcome using dif-
ferent weighted averages. A 5-fold cross validation tech-
nique was used to set the hyperparameters of the model
and evaluate the performance on the public dataset. The
model’s input involved EEG data, heart rate variability
(HRV) features extracted from the available ECGs and
clinical information. The weighted averages showed im-
provement over uniform weighting on the hidden valida-
tion set (score increased up to 20%), but no improvement
in cross-validation. Also, the addition of HRV features and
clinical information did not show significant improvement
over using only EEG data. The Challenge scores on the
public training set, hidden validation set and hidden test
set were 0.887, 0.627, and 0.708, respectively (team name:
unimi_bisp_squad, ranking: 5).

1. Introduction

Predicting the neurological recovery of comatose pa-
tients after cardiac arrest (CA) is a major clinical problem,
with many patients never regaining consciousness and oth-
ers with good outcome predicted as poor. Current guide-
lines recommend electroencephalogram (EEG) monitoring
to identify features predictive of severe brain injury leading
to poor outcomes, such as EEG background suppression,
burst suppression and seizure. In addition, the combina-
tion of EEG monitoring with serum biomarkers and clini-
cal information was found optimal, with the former having
the major impact on the prediction [1]. However, contin-
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uous monitoring of EEG patterns requires extensive effort
by the clinical staff and visual assessment of such patterns
may compromise the prediction [2].

The George B. Moody PhysioNet Challenge 2023 [3,4]
was dedicated to the development of automated methods to
predict neurological recovery from coma after CA. The In-
ternational Cardiac Arrest REsearch consortium (I-CARE)
assembled a database from seven hospitals in the United
States and Europe with a large set of patients who un-
derwent monitoring following CA [5]. The Challenge
aimed to design state-of-the-art predictive models to pro-
cess EEGs, electrocardiograms (ECGs) and clinical infor-
mation to predict the neurological outcome.

Previous works showed that deep learning (DL) was an
effective methodology to predict the neurological recovery
using only 5 minute artifact-free EEGs [2]. Also, when the
DL model processed the entire monitoring period (up to 3
days, using a recurrent neural network), the performance
improved [6]. In these studies, the optimal timing for the
prediction after the resuscitation was found different (12 h
vs 66 h), keeping this as a matter of investigation.

Another possible approach to predict the neurological
outcome is heart rate variability (HRV), which recently
provided promising performance [7]. Results suggested
HRV features, such as very low frequency power and
entropy-based features, being useful for the prediction.

In this study, relying on previous results, we investigated
the use of DL and HRV to predict the neurological out-
come after CA. The approach was designed to process all
available 5 minute recordings of a patient and to weight the
predictions according to the time from resuscitation.

2. Methods

2.1. Dataset

The public dataset of the Challenge consisted of a col-
lection of several biosignals from 607 patients who ex-
perienced CA and were treated in intensive care units.
Among others, signals included 19-channel continuous
EEG recordings and one- or two-lead electrocardiograms
(ECGs). Additionally, for each patient, several clini-
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cal variables were available; namely: age, sex, hospital
where they were hospitalized, return of spontaneous cir-
culation (ROSC) in minutes, out-of-hospital cardiac arrest
(OHCA), shockable rhythm and targeted temperature man-
agement (TTM) in Celsius. Every patient had a different
number of recordings depending on the total monitoring
time. They could last from hours to days and were pro-
vided split into hourly segments.

2.2.  Preprocessing

We simulated a bipolar EEG montage by subtracting
the leads as follows: Fpl-F7, F7-T3, T3-T5, T5-O1, Fp2-
F8, F8-T4, T4-T6, T6-02, Fpl-F3, F3-C3, C3-P3, P3-
O1, Fp2-F4, F4-C4, C4-P4, P4-02, Fz-Cz, Cz-Pz. From
these signals, we selected one 5-minute window in a given
hourly segment least affected by noise. To do this, we seg-
mented each 1-hour EEG signal into consecutive 5-minute
windows. We then selected the window with the highest
number of good quality channels which occurred first in
time. The assessment of EEG quality for each channel was
performed using a decision tree based on two features, i.e.,
the peak-to-peak amplitude (PP) and the average absolute
difference (AAD) between consecutive EEG samples. The
thresholds for the decision tree were estimated by comput-
ing the 2.5 and 97.5 percentiles of the distribution of PP
and AAD values of all 18 channels of the EEG record-
ings of the first version of the dataset, since it contained
only high quality EEGs. A good quality channel was then
defined as having both PP and AAD within the ranges de-
fined by the percentiles. Thresholds for PP were 0.66 pV'
and 679.55 iV and for AAD 0.3 4V and 15.96 V.

The selected window was then filtered with a zero-phase
band-pass FIR filter (0.1-15 Hz), designed using the win-
dow method with a Hamming window. Then, the window
was resampled at 30 Hz (i.e., 9000 samples) and signals
were stored into a matrix with dimensions of 18 x 9000.
In case the hourly segment was shorter than 5 minutes, we
applied zero-padding to form a 5-minute signal.

In order to extract HRV features, ECG signals went
through a preprocessing phase. First, to make ECG sig-
nals uniform in terms of sampling rates and to reduce the
contribution of high frequency noise, baseline wandering
and respiration, ECGs were filtered with a 3"4 order But-
terworth band-pass filter (0.5 - 40 Hz) and then re-sampled
at 128 Hz. Second, the ECG segment which was time-
aligned to the EEG window was then retained. Third, ECG
quality was assessed by computing the average Pearson’s
correlation coefficient between the average QRS and each
individual complex extracted from the vector magnitude.
When such correlation was < 0.8 then the ECG was con-
sidered as of a poor quality and the HRV features were
then marked as missing values to be imputed. Otherwise,
we extracted the inter-beat time interval series (RR) using

a custom Pan-Tompkins algorithm and extracted the fol-
lowing HRV features: i) average RR interval (ARR) in s;
ii) SDNN in ms; iii) RMSSD in ms; iv) sample entropy
(SampEn, m = 2, r = 0.2 x STD, where the estimate
of the standard deviation was obtained as 1.4826 x median
absolute deviation of the RR series); and v) deceleration
capacity (DC) in ms (L = T = s = 5). For the latter, the
approach reported in [8] was used; here, the autocovari-
ance function was directly estimated from the RR series.

2.3. Models
2.4. EEG model

Several DL components were used: i) 1D convolutional
layer (ConvL); ii) dropout (Dp); iii) batch normalization
(BN); iv) fully connected layer (FCL); v) ReLU activa-
tion function (ReLU); vi) max pooling (MP) with size and
stride of 4; and flatten layer (FL). The EEG model con-
sisted in an initial ConvL with F' filters followed by R
residual blocks [9]. Each block was designed as 2 con-
secutive ConvLs. The skip connection of each block had a
ConvL with filter size of 1. The ConvLs of the first block
had F filters while the ConvLs of second block had 2F'.
Next, 2 FCL and a single neuron as output were added.
Each ConvL was followed by BN and Dp. The Dp of first
ConvL of each block was followed by ReLU. The input
of each block was preceded by ReLU and MP. The first
FCL was preceded by ReLU, MP and a FL. Each FCL was
followd by BN, Dp and ReL.U.

The model took as input a single preprocessed EEG ma-
trix of a patient and outputted the probability of poor out-
come for each available signal. A weighted aggregation of
the probabilities over 72 hours was computed as the final
probability of having a poor outcome for that patient.

In order to build the EEG model, we performed a grid-
search on the kernel-size K and the number of filters F’
of the ConvLs, as well as the number of residual blocks R
and neurons of the FCL, by minimizing the 5-fold cross-
validation (CV) error (see sec. 2.8 for details about per-
formance evaluation). Once the architecture was defined,
we performed a grid/random-search on i) the regulariza-
tion values of \; and A, of the I,; and L norms; ii) posi-
tive class weighting; iii) the probability of the dropout lay-
ers; iv) the value of the learning rate; v) batch size; and vi)
number of training epochs. We also tested different gradi-
ent descent algorithms such as stochastic gradient descent
(SGD), Adam and RMSprop. Here, SGD showed to be
more stable and consistent, and it was then retained.

2.5. ECG model

The ECG model was defined as a logistic regression
model. The inputs were i) HRV features binarized; and ii)
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Figure 1: Average and standard deviation across the 5 folds of Challenge score and AUC for each aggregation formula (a)

and the four models tested (b).

the outcome probability estimated by the EEG. The out-
put was the probability of poor outcome. The binarization
was performed using thresholds estimated by means of a
Receiver Operating Characteristic (ROC) curve. The op-
timal threshold was the one associated to the closest top-
left corner of the ROC curve. Features were set to 1 if
ARR > 0.74 s, SDNN > 41.60 ms, RMSSD > 54.16
ms, SampEn > 1.06 and DC > 9.26 ms, 0 otherwise.

The logistic regression model was trained using the
same learning rate, optimizer, momentum, loss function,
positive class weighting of the EEG model and it was
trained for 100 epochs (found with a coarse grid-search).

In case the ECG recording was not available at the same
time of the EEG, or the ECG was not of sufficient quality,
the HRV features were imputed (see sec. 2.7).

2.6.  Clinical model

Similarly to the ECG model, we designed a logistic re-
gression model with the same output while inputs were 1)
clinical features binarized; and ii) outcome probability es-
timated by the EEG model. From the set of available clin-
ical data we considered age, sex, ROSC, OHCA, schock-
able rhythm and TTM. Age and ROSC were binarized to 1
if age > 65 (arbitrary threshold) and ROSC > 30.0 min-
utes (75" percentile across patients), 0 otherwise. TTM
was set to 1 if the patient was treated with temperature
management, 0 otherwise. The logistic regression model
was trained as the ECG model, but with 50 epochs.

Validation Test
0.627

Training
0.887

Ranking
0.708 5

Table 1: Challenge score for our final selected entry (team
unimi_bisp_squad) for the public training set, repeated
scoring on the hidden validation set, and one-time scor-
ing on the hidden test set.

2.7. Data imputation

Different approaches were carried out for imputing
missing values. Regarding the ECG recordings, we im-
puted the missing values using the median of every feature
computed over the good quality ECG signals which were
time-aligned with the corresponding EEG signals. For the
clinical variables, we used the median value for age and
ROSC variables. For sex, OHCA and shockable rhythm,
since these were categorical variables, the most frequent
value across all patients was retained for imputation.

2.8. Training of the model and perfor-

mance evaluation

A 5-fold CV was chosen for the selection of the hyper-
parameters and evaluation of the performance. Folds were
built only once (same folds for all experiments) and pa-
tient’s data were not divided into different folds.

The weighted binary cross entropy (BCE) was used to
handle class imbalance. We quantified the Challenge score
(TPR at a FPR of 0.05) at 72 h as validation metric. The
score required only one probability per patient to be com-
puted, hence, probabilities provided by the models for each
5-minute segment were aggregated by a weighted aver-
age across hours. The average score across folds was
used to select the hyperparameters. The training of the
final model was performed using the selected hyperparam-
eters and preprocessing on the public dataset. The training
pipeline was then submitted to the Challenge organizers to
obtain the official validation score.

3. Experiments

We conducted three experiments. In the first one, since
the dataset was unbalanced with 225 patients with good
outcome and 382 with poor outcome (positive class), we
evaluated different weights for the samples of the poor out-
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come class in the BCE loss. We tested the values: 1, 1/4,
1/10 and 225/382. In the second one, the final probability
of poor outcome for each patient was obtained by aggre-
gating the probabilities computed from all the available 5-
minute windows over the 72 hours. Here, we tested the fol-
lowing weights: 1,22, (1-2)*, {so=m=0m et
where x = hours/72 (weights were then normalized to
sum to 1). In the third one, we trained and compared
all models separately and one combining EEG, ECG and
clinical data. Models were trained with uniform weights
across hours (i.e., 1) for averaging the output probabilities.

4. Results

The optimal hyperparameters were: i) K = 91 sam-
ples, ' = 32, R = 2, 256 and 128 neurons in the
first and second FCLs; ii) batch size of 70, 350 epochs
with learning rate of 1 x 10~ and momentum of 0.9; iii)
Al = 1 x107° and Ay = 1 x 10~%; iv) Dp probabil-
ity of 0.3. In the first experiment, we identified the opti-
mal positive class weighting as 1/4, that we then used for
other experiments. In the second experiment, the Chal-
lenge score did not vary substantially across the weighted
average formulas in CV (= 0.53; Fig. la). On the hid-
den validation set, weighting differently the probabilities
seemed beneficial for prediction at 72 h, with a score of
0.63 for the weight 2, which was approximately a 20%
improvement with respect to uniform weights (0.63 vs
0.52). Yet, the other formula weighting more late record-
ings, i.e., m, obtained a reduction of 13% (0.45
vs 0.52). When weighting more recordings near ROSC,
using (1 — z)? and “m(%o)), the improvement was ap-
proximately 15% (0.60‘vs 0.52) and 12% (0.58 vs 0.52). In
the third experiment, similar results were obtained across
the four models, showing no improvements when ECG and
clinical data were added to the EEG model’s outputs (Fig.
1b). In CV, the combined model achieved slightly higher
performance with respect to that of the EEG model. Also,
variability across folds seemed lower for models with clin-
ical variables in input with respect to EEG only (0.11 vs
0.16). For an additional comparison, Figure 1 also re-
ports the area-under-the-ROC-curve (AUC) for each ex-
periment. The Challenge scores achieved with 2% weights
and EEG only are reported in Table 1.

5. Discussion and conclusions

Here, we presented a DL model processing only one 5-
minute window in each hour after ROSC and weighted all
predictions to obtain the final probability of poor outcome.
While tests performed on the public set and hidden valida-
tion set suggested that first hours after ROSC (3" and 5"
formulas in Fig. 1a) had more importance as compared
to uniform weights, the final score on the hidden test set,

which weighted more later hours, supported an opposite
conclusion. The optimal timing still requires investigation.
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